Energy of SHM
minimum energy at_ stable equilibrium_
kinetic E + elastic E = energy
$E=E_k+E_e$
# Measured when one is ZERO
# Kinetic E = 0
at extreme position ($x_{max}=A$)
$E_k=0$
$E_e=\frac{1}{2}k\cdot A^2$
When no kinetic energy
$E=\frac{1}{2}kA^2$
# Elastic E = 0
at equilibrium position ($x=0$)
$E_e=0$
$E_k=\frac{1}{2}mv^2$
When no elastic energy
$E=\frac{1}{2}mv^2_{max}$
Energy remains constant
$\frac{1}{2}kA^2=\frac{1}{2}m\omega^2\cdot A^2=\frac{1}{2}mv^2_{max}$The maximum kinetic energy is equal to the maximum elastic energy